G* = = OPERADOR QUÂNTICO DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI. ] é um
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
A teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetric, teoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.
Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imediatamente remove o problema das autoenergias.
Resolução de problema de causalidade
T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde é a energia cinética relativística funcional de partícula i, e, e são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para este Lagrangiana gerará exactamente as mesmas equações do movimento de e e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]
A formulação de Feynman da mecânica quântica ou formulação de integrais de caminho da mecânica quântica é uma descrição da teoria quântica que generaliza a ação da mecânica clássica. Ela substitui a noção clássica de uma única trajetória para um sistema por uma soma, ou integral funcional, por meio de uma infinidade de trajetórias possíveis para calcular a amplitude quântica.
A ideia básica da formulação de integral de caminho é originária de Norbert Wiener, que apresentou o processo de Wiener para a solucionar problemas de difusão e movimento Browniano.[1] Esta ideia foi estendida para o uso do Lagrangiana na mecânica quântica por P. A. M. Dirac em seu artigo de 1933[2] . O método completo foi desenvolvido em 1948 por Richard Feynman. Algumas preliminares foram trabalhados anteriormente, no curso de sua tese de doutorado no trabalho de John Archibald Wheeler. A motivação original surgiu da aspiração de obter uma formulação da mecânica quântica para a teoria de teoria de ação à distância de Wheeler e Feynman usando uma Lagrangeana (ao invés de um Hamiltoniano) como ponto de partida.
Esta formulação tem se provado fundamental para o desenvolvimento posterior da física teórica, por ser manifestamente simétrica entre o tempo e o espaço. Ao contrário dos métodos anteriores, a formulação de integral de caminho-integral permite facilmente a mudança de coordenadas entre descrições canônicas diferentes do mesmo sistema quântico.
A formulação de integral de caminho também relaciona processos quânticos e estocásticos, fornecendo a base para a grande síntese, na década de 1970 que unificou a teoria quântica de campos com a teoria de campos estatísticos de campo flutuante perto de uma transição de fase de segunda ordem. A equação de Schrödinger é uma equação de difusão com uma constante de difusão imaginária, sendo a integral de caminho uma continuação analítica do método para a soma de todos as possíveis caminhadas aleatórias. Por esta razão integrais de caminho foram utilizados no estudo de difusão e movimento Browniano pouco antes de serem introduzidos na mecânica quântica.[3]
Princípio da ação quântica
Na mecânica quântica, assim como na mecânica clássica, o Hamiltoniano é o gerador de translações temporais. Isto significa que o estado em um tempo posterior difere do estado atual pela atuação do operador Hamiltoniano (multiplicado pelo negativo unidade imaginária, −i). Para os estados com uma determinada energia, esta é uma instrução de relação de De Broglie entre a frequência e a energia, e a relação geral é consistente com o que e o princípio da superposição.
No entanto, na mecânica clássica o Hamiltoniano é derivado a partir de um Lagrangeana, que é uma quantidade mais fundamental em relação à relatividade especial. O Hamiltoniano indica como o movimento se desenvolve no tempo, mas o tempo é diferente em diferentes sistemas de referência. Assim, o Hamiltoniano é diferente em referenciais diferentes e este tipo de simetria não é aparente na formulação original da mecânica quântica.
O hamiltoniano é uma função da posição e momento no tempo t, determinando a posição e o momento no tempo (t+ε). A Lagrangiana é uma função das posição em t e (t+ε) (para um intervalo de tempo infinitesimal, a velocidade é medida é a velocidade instantânea, tornando a Lagrangeana como função da posição e da velocidade). A relação entre os dois é por uma transformação de Legendre e a condição que determina as equações de movimento (ou equações de Euler–Lagrange) é a extremização da ação.
Na mecânica quântica, uma transformação de Legendre é difícil de interpretar uma vez que o movimento não é dado por uma trajetória definida. Na mecânica clássica, a discretização temporal da transformação de Legendre torna-se:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
e
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde a derivada parcial com relação a mantém q(t + ε) constante. A inversa da transformação de Legendre é:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
tomando q fixo.
Na mecânica quântica, um estado qualquer é uma superposição de estados independentes, com diferentes valores de q, ou diferentes valores de p, sendo que o momento e a posição (p e q) podem ser interpretadas como operadores que não comutam. O operador p é definitivo em estados onde q são indeterminados. Considere dois estados separados no tempo. A atuação do operador correspondente à Lagrangiana:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Se a multiplicação implícita na fórmula são reinterpretados como multiplicação de matrizes, o primeiro fator é:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Se esse também é interpretado como uma multiplicação de matrizes, a soma sobre todos os estados integra todos q(t), levando a transformada de Fourier em q(t), mudando a base para p(t). Isto é a ação sobre o espaço de Hilbert – mudar de base para p no tempo t.
Em seguida, tem-se:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
que é uma evolução infinitesimal para o futuro.
Finalmente, o último fator, nessa interpretação, é:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
que é uma mudança de base de volta para q no tempo (t+ε).
Isto não é diferente do operador de evolução temporal: o fator H contém toda informação da dinâmica, avançando o estado no tempo. A primeira e a última parte são as transformadas de Fourier para a mudança na base pura de q a partir de uma base intermediária p.
De forma equivalente, pode-se dizer que: uma vez que o Hamiltoniano é naturalmente uma função de p e q, exponenciando estas quantidades e realizando uma mudança de base de p para q em cada passo permite expressar o elemento da matriz de H como uma função simples ao longo de cada caminho. Esta função é o análogo quântico da ação clássica. Esta observação é feita por Paul Dirac.
Dirac observou ainda que se pudesse, o quadrado do tempo-a evolução do operador no S representação:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
e isso é o operador de evolução temporal entre o tempo t e o tempo t + 2ε. Enquanto que na representação H a quantidade que está sendo somada nos estados intermediários é um elemento de matriz obscuro, na representação S esta é reinterpretado como uma quantidade associada ao caminho. No limite que leva um grande poder de esse operador, reconstrói-se a evolução quântica completa entre dois estados sendo o estada mais antigo com valor fixo q(0) a o estado mais recente com valor q(t). O resultado é uma soma sobre os caminhos com uma fase que é a ação quântica. Crucialmente, Dirac identificada neste papel, a profundidade da mecânica quântica razão do princípio da mínima ação de controlar o limite clássico.
Em física, o efeito Compton, ou espalhamento Compton, é o espalhamento de um fóton por uma partícula carregada, geralmente um elétron, que resulta em uma diminuição da energia (aumento do comprimento de onda) do fóton espalhado, tipicamente na faixa de raios-X ou de raios gama. Como a relação de dispersão para partícula livre exibe dependência com o quadrado de seu momento, E = P²/(2m), ao passo que a relação de dispersão para fótons é linear em relação ao momento, E=PC, a conservação simultânea do momento e da energia é praticamente inviável na interação com partícula livre, onde as referidas leis de conservação implicam a emissão de um segundo fóton a fim de serem satisfeitas.
Em materiais cristalinos um fônon pode tomar parte no processo ao invés de um fóton. Considerando-se o momento cristalino da partícula, a absorção completa do fóton torna-se viável, sendo importante em espectroscopia de fotoelétrons.
Há também o espalhamento Compton inverso, processo onde o fóton ganha energia pela interação com a matéria. A variação total no comprimento de onda, positivo ou negativo, é denominada variação Compton.
O Efeito Compton foi observado por Arthur Holly Compton em 1923, e posteriormente verificado por seu aluno Y. H. Woo nos anos seguintes.[1] Compton ganhou o prêmio Nobel de Física em 1927 pela descoberta.[2]
O efeito é importante por mostrar que a luz não pode ser explicada meramente como um fenômeno ondulatório. O Espalhamento Thomson, a clássica teoria de partículas carregadas espalhadas por uma onda eletromagnética, não poderia explicar uma variação no comprimento de onda. A luz deve agir como se fosse constituída de partículas para explicar o espalhamento de Compton. O experimento de Compton convenceu os físicos de que a luz pode agir como uma corrente de partículas cuja energia é proporcional à frequência.
A interação entre a alta energia dos fótons e elétrons resulta no elétron recebendo parte da energia (fazendo-o recuar), e um fóton contendo a energia restante sendo emitida numa direção diferente da original, sempre conservando o momento e a energia totais do sistema. Se o fóton ainda possui bastante energia, o processo pode ser repetido.
O espalhamento de Compton ocorre em todos os materiais e predominantemente com fótons de média-energia (entre 0.5 e 3.5 MeV). Ele é também observado com fótons de baixa energia; fótons de luz visível ou de frequências mais altas, por exemplo, junto ao efeito Fotoelétrico.
Fórmula da variação de Compton
Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz[3].
- Luz como uma partícula;
- Dinâmica Relativística;
- Trigonometria.
O resultado final nos dá a equação do espalhamento de Compton:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Onde:
- é o comprimento de onda do fóton antes do espalhamento,
- é o comprimento de onda do fóton depois do espalhamento,
- me é a massa do elétron,
- é conhecido como o comprimento de onda de Compton,
- θ é o ângulo pelo qual a direção do fóton muda,
- h é a constante de Planck, e
- c é a velocidade da luz no vácuo.
Coletivamente, o comprimento de onda de Compton é .
A densidade de carga linear, superficial ou volumétrica é uma quantidade de carga elétrica em uma linha, superfície ou volume respectivamente. Ela é medida em coulombs por metro (C/m), metro quadrado (C/m²), ou metro cúbico (C/m³), respectivamente. Como existem cargas positivas e negativas, a densidade pode tomar também valores negativos. Assim como qualquer densidade, ela depende da sua posição. Ela não deve ser confundido densidade de portadores de carga. Como relatado na química, a densidade de carga pode se referir a distribuição sobre o volume de uma partícula, átomo ou molécula. Assim, um cátion de lítio possui mais densidade de carga do que um cátion de sódio, pois o sódio possui raio atômico maior.
Densidade de carga clássica
Carga contínua
A integral da densidade de carga , , sobre a linha , superfície , ou volume , é igual a carga total desta região, definida como[1]:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Esta relação define densidade de carga matematicamente. Note que alguns símbolos utilizados para denotar várias dimensões podem variar dependendo do campo de estudo. Comumente a notação utilizada é , , ; or , , para (C/m), (C/m²), (C/m³) respectivamente.
Densidade de carga homogênea
Para o caso de uma densidade de carga homogênea, que é independente da posição, é igual a , a equação simplifica-se a:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
A prova é simples. Comece com a definição de carga de um volume qualquer:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Então, pela definição de homogeneidade, é uma constante que será denotaremos para diferenciar entre a forma constante e não constante, e então, pela propriedade da integral, ela pode ser levada para fora da integração, resultando em:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Novamente, pelas propriedades das integrais:
- =
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Entretanto, pela substituição:
- =
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Que resulta em:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Que é precisamente o resultado mencionado acima para a densidade volumétrica de carga. As provas para a densidade linear e superficial são equivalentes e seguem os mesmos argumentos
Cargas discretas
Se a carga em uma região consiste de portadores de cargas pontuais, tal como elétrons, a densidade de carga pode ser expressa pela função delta de Dirac. Por exemplo, a densidade volumétrica de carga é:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Aqui, é a carga e a posição do i-ésimo portador de carga. Se todos portadores de carga possuírem a mesma carga, então a densidade de carga pode ser expressa em função da densidade de portadores de cargas :
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Novamente, as equações equivalentes para densidade de carga linear e superficial seguem diretamente das relações acima.
Densidade de carga quântica
Em mecânica quântica, densidade de carga é relacionado a função de onda pela equação
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
quando a função de onda é normalizado como
Densidade de fluxo magnético ou Indução Magnética , cuja unidade é o tesla , ou webers por metro quadrado , é a medida da concentração do fluxo magnético em um devido material. Existem materiais que para um mesmo campo magnético aplicado permitem diferentes passagens de densidade de fluxo magnético.
Motores, geradores e transformadores são feitos com materiais que permitem passar elevadas densidades de fluxo. Na região magneticamente linear a relação entre a densidade de fluxo e o campo magnético é dado por . Materiais ferromagnéticos facilmente tem permeabilidade magnética na ordem de mil a dez mil vezes[1] a permeabilidade magnética do ar .
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Geração da densidade de fluxo magnético
Imagine uma bobina enrolada no entorno de um material ferromagnético. A partir do momento que flui corrente no fio, um campo magnético
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
passa a circular ao redor deste (veja figura ao lado). Uma bobina é uma forma de se concentrar campo magnético. Uma vez aplicado o campo magnético dá-se origem à indução magnética (ou densidade de fluxo magnético) . Associada a indução magnética está o fluxo magnético dado por [1][2]
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde é a área que as linhas de fluxo atravessam.
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Comentários
Postar um comentário